If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=16(-Y^2+9Y+16)
We move all terms to the left:
-(16(-Y^2+9Y+16))=0
We calculate terms in parentheses: -(16(-Y^2+9Y+16)), so:We get rid of parentheses
16(-Y^2+9Y+16)
We multiply parentheses
-16Y^2+144Y+256
Back to the equation:
-(-16Y^2+144Y+256)
16Y^2-144Y-256=0
a = 16; b = -144; c = -256;
Δ = b2-4ac
Δ = -1442-4·16·(-256)
Δ = 37120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{37120}=\sqrt{256*145}=\sqrt{256}*\sqrt{145}=16\sqrt{145}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-144)-16\sqrt{145}}{2*16}=\frac{144-16\sqrt{145}}{32} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-144)+16\sqrt{145}}{2*16}=\frac{144+16\sqrt{145}}{32} $
| 21/2+q=121/2 | | 2(p+7)=4+4p | | 7(4p)+3(5)+2=(3) | | 2+n=7/8n-15 | | 2h2–5h=–1 | | 2x+16=2x+3 | | (5^0.5x)=9 | | 3n^2=-50 | | 16c+8c+40=400 | | (5x+4)-x=-2 | | 7r+2=5)r-4) | | (3x)=(7x+2) | | 25=10+4x-x | | j+3j+2j-4=32 | | 16^x-2=8^4x | | (7x+2)=(3x) | | 5^0.5x+12=21 | | 7x-4x+2x+5=2x+15 | | 25=0+4x-x | | y-10+7=y | | 2(x-1)-4x=14 | | 9(4p)=-2(3) | | 96=-6(5+3a) | | (6x+7)-2x=-1 | | 55h=600 | | |x-6|=14 | | h/55=600 | | -(3x+3)=7=1 | | x-256=412 | | |x-6=14 | | 2x+1.5x2x;x=6.2 | | -3(x-3)+2x=10 |